inquisitor
Рыцарь со страхом и упрёком. // NULLA DIES SINE DIEI IRAE // N'Ayez pas peur de soufrir le futur nous attend. // Утка подгорает!
Парадокс Рассела
Пусть K — множество всех множеств, которые не содержат себя в качестве своего элемента. Содержит ли K само себя в качестве элемента?
Если да, то, по определению K, оно не должно быть элементом K — противоречие.
Если нет — то, по определению K, оно должно быть элементом K — вновь противоречие.


На мой взгляд, здесь проблема не в термине "множество множеств", а в кванторе всеобщности "всех". Если количество множеств рекурсивно неисчислимо, то невозможно постоить K. Да и оператор принадлежности должен быть разный для множеств разной мощности...

Также возникают вопросы относительно направления действия самого оператора принадлежности:
xi ∈ {x1,x2,...,xi-1,xi,xi+1,...}; означает «x принадлежит множеству»

{x1,x2,...,xi-1,xi,xi+1,...} э x; означает «множество содержит

Это по сути разные операторы, поскольку тип аргументов у них разный...

Можно сконструировать теорию, в которой множество может содержать элементы, не принадлежащие ему, а также элемент может принадлежать множеству, не содержащему его...

@темы: Вопросы, Парадоксы, Теория множеств