Прежде всего хочу выразить владелице сообщества искреннюю признательность за ее заметки по теории множеств. Более внятного и интересного изложения этой темы мне не встречалось еще нигде в популярной литературе.
А теперь вопрос.
Здесь, в частности, Amicus Plato пишет:

Следом за א0 идет א1 — мощность континуума. (...) Но есть и следующие алефы, и число их бесконечно.

Означает ли это, что существуют множества, имеющие большую мощность, чем мощность континуума? И, если да, то каковы примеры таких множеств? То есть, если алеф-нуль - кардинальное число множества натуральных чисел, алеф-один - множества действительных чисел, то, верно ли я понимаю, что существуют какие-то алеф-два и т.п., которые соответствуют, в свою очередь, другим множествам? Это ли имеется в виду, когда говорят о лестнице алефов?
Прошу прощения за корявое изложение вопроса - я не математик))) И за возможную его банальность, но интернет на эту тему молчит.